POWER SERIES (II - PART)

Example 1.

Function $f(x)=\operatorname{arctg} x$ develop into a power series and determine its interval of convergence.

Solution:

The idea is to use familiar development $\frac{1}{1-x}=\sum_{n=0}^{\infty} \mathrm{x}^{\mathrm{n}} \quad-1<\mathrm{x}<1$
So, here is $x^{2} \in(-1,1) \rightarrow x \in(-1,1)$
How to apply theorem $\int_{a}^{b}\left(\sum_{n=0}^{\infty} a_{n} \mathrm{x}^{\mathrm{n}}\right) \mathrm{dx}=\sum_{n=0}^{\infty}\left(\int_{a}^{b} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \mathrm{dx}\right)$
$f(x)=\operatorname{arctg} x=\int_{0}^{x} \frac{1}{1+x^{2}} d x=\int_{0}^{x}\left(\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}\right) d x=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{x} x^{2 n} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$
You should always examine the convergence of the resulting series on the borders of the interval of convergence.
In our case it is : $x=-1$ and $x=1$
For $\mathrm{x}=-1$
$\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \rightarrow$ for $x=-1 \rightarrow \sum_{n=0}^{\infty}(-1)^{n} \frac{(-1)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n} \text { this is } 1_{(-1)^{2 n}}(-1)^{1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2 n+1}$
This is an alternative series, and it will apply the Leibniz criteria:
$\lim _{n \rightarrow \infty} \frac{1}{2 n+1}=0$ and we have : $n+1>n \rightarrow 2(n+1)>2 n \rightarrow 2(n+1)+1>2 n+1 \rightarrow \frac{1}{2(n+1)+1}<\frac{1}{2 n+1} \rightarrow a_{n+1}<a_{n}$

This means that the alternative series is convergent
For $\mathrm{x}=1$
$\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \rightarrow$ For $x=1 \rightarrow \sum_{n=0}^{\infty}(-1)^{n} \frac{(1)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$
Similar to the previous series and here, number series is convergent (Leibniz criterion)
Hence, our power series is convergent for $x \in[-1,1]$

Example 2.

Function $f(x)=\ln \frac{2+x}{1-x}$ develop into a power series.

Solution:

$$
\begin{aligned}
& f(x)=\ln \frac{2+x}{1-x} \\
& f^{\prime}(x)=\frac{1}{\frac{2+x}{1-x}} \cdot\left(\frac{2+x}{1-x}\right)=\frac{1-x}{2+x} \cdot \frac{1(1-x)+1(2+x)}{(1-x)^{2}}=\frac{3}{(2+x)(1-x)}
\end{aligned}
$$

We got a rational function:

$$
\begin{aligned}
& \frac{3}{(2+x)(1-x)}=\frac{A}{2+x}+\frac{B}{1-x} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(2+x)(1-x) \\
& 3=A(1-x)+B(2+x) \\
& 3=A-A x+2 B+B x \\
& 3=x(-A+B)+A+2 B \\
& -A+B=0 \\
& A+2 B=3 \\
& 3 B=3 \rightarrow B=1 \\
& \frac{3}{(2+x)(1-x)}=\frac{1}{2+x}+\frac{1}{1-x}=\frac{1}{2\left(1+\frac{x}{2}\right)}+\frac{1}{1-x}=\frac{1}{2} \cdot \frac{1}{\left(1+\frac{x}{2}\right)}+\frac{1}{1-x}
\end{aligned}
$$

We will use $\frac{1}{1-x}=\sum_{n=0}^{\infty} \mathrm{x}^{\mathrm{n}} \quad-1<\mathrm{x}<1$
$\frac{1}{1+\frac{x}{2}}=\frac{1}{1-\left(-\frac{x}{2}\right)}=\sum_{n=0}^{\infty}\left(-\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{2^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}} x^{n}$

The radius of convergence of this series is:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{1}{2^{n}}}{\frac{1}{2^{n+1}}}=\lim _{n \rightarrow \infty} \frac{2^{n} \cdot 2}{2 n}=2$, so: $\quad x \in(-2,2)$

Now, for the interval $x \in(-1,1)$ (Which belongs to a given interval $(-2,2))$ we have :
$f^{\prime}(x)=\frac{1}{2} \cdot \frac{1}{1+\frac{x}{2}}+\frac{1}{1-x}=\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}} x^{n}+\sum_{n=0}^{\infty} x^{n}=$
$=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 \cdot 2^{n}} x^{n}+\sum_{n=0}^{\infty} x^{n}$
$=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n}+\sum_{n=0}^{\infty} x^{n}$
$=\sum_{n=0}^{\infty} \frac{(-1)^{n}+2^{n+1}}{2^{n+1}} x^{n}$

Now go back through the integral to function $f(x)$:
$f(x)=\int_{0}^{x}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}+2^{n+1}}{2^{n+1}} x^{n}\right) d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}+2^{n+1}}{2^{n+1}} \int_{0}^{x} x^{n} d=\sum_{n=0}^{\infty} \frac{(-1)^{n}+2^{n+1}}{2^{n+1}} \cdot \frac{x^{n+1}}{n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}+2^{n+1}}{2^{n+1}(n+1)} x^{n+1}$

Example 3.

Function $f(x)=\frac{1+x}{(1-x)^{3}}$, develop into a power series and then determine the sum $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n-1}}$

Solution :

Again we "separate" the function.

$$
\begin{aligned}
& \frac{1+x}{(1-x)^{3}}=\frac{A}{1-x}+\frac{B}{(1-x)^{2}}+\frac{C}{(1-x)^{3}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& 1+x=A(1-x)^{2}+B(1-x)+C \\
& 1+x=A\left(1-2 x+x^{2}+B-B x+C\right. \\
& 1+x=A-2 A x+A x^{2}+B-B x+C \\
& 1+x=+A x^{2}+x(-2 A-B)+A+B+C \\
& A=0 \\
& -2 A-B=1 \\
& \frac{A+B+C=1}{B=-1 \rightarrow C=2} \\
& \frac{1+x}{(1-x)^{3}}=\frac{0}{1-x}+\frac{-1}{(1-x)^{2}}+\frac{2}{(1-x)^{3}}=\frac{2}{(1-x)^{3}}-\frac{1}{(1-x)^{2}}
\end{aligned}
$$

So :
$f(x)=\frac{2}{(1-x)^{3}}-\frac{1}{(1-x)^{2}}$

We know that $\frac{1}{1-x}=\sum_{n=0}^{\infty} \mathrm{x}^{\mathrm{n}} \quad-1<\mathrm{x}<1$
Mark with $g(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} \mathrm{x}^{\mathrm{n}}$
Derivative is :

$$
\begin{aligned}
& g^{`}(x)=-\frac{1}{(1-x)^{2}}(1-x)^{\prime}=-\frac{1}{(1-x)^{2}}(-1)=\frac{1}{(1-x)^{2}} \\
& g^{`}(x)=-\frac{1}{(1-x)^{4}}\left((1-x)^{2}\right)^{`}=-\frac{1}{(1-x)^{4}} 2(1-x)(-1)=\frac{2}{(1-x)^{3}}
\end{aligned}
$$

Now we have :
$\frac{1}{(1-x)^{2}}=g^{`}(x)=\left(\sum_{n=0}^{\infty} x^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n x^{n-1} \quad$ Watch out: we must change that n goes from 1.
$\frac{2}{(1-x)^{3}}=g^{`}(x)=\left(g^{\prime}(x)\right)^{\prime}=\left(\sum_{n=1}^{\infty} n x^{n-1}\right)^{\prime}=\sum_{n=2}^{\infty} n(n-1) x^{n-2}$

Watch out: we must change that n goes from 2, but since the previous sum goes is 1 , we will do a small correction for the second sum, we will put that goes from 1 , and where we have n, we write $n+1$
$\frac{2}{(1-x)^{3}}=\sum_{n=2}^{\infty} n(n-1) x^{n-2}=\sum_{n=1}^{\infty}(n+1)(n+1-1) x^{n+1-2}=\sum_{n=1}^{\infty}(n+1) n x^{n-1}=\sum_{n=1}^{\infty} n(n+1) x^{n-1}$
Now we return to the task:
$f(x)=g^{`}(x)-g^{`}(x)=\sum_{n=1}^{\infty} n(n+1) x^{n-1}-\sum_{n=1}^{\infty} n x^{n-1}=\sum_{n=1}^{\infty}[n(n+1)-n] x^{n-1}=\sum_{n=1}^{\infty}\left[n^{2}+n-n\right] x^{n-1}$
$f(x)=\sum_{n=1}^{\infty} n^{2} x^{n-1}$

To find the required sum $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n-1}}$, we need instead of x in $f(x)=\sum_{n=1}^{\infty} n^{2} x^{n-1}$ to put some number.
Here it is obvious that it should be $\frac{1}{2}$. This value change in the initial function :
$f(x)=\frac{1+x}{(1-x)^{3}} \rightarrow f\left(\frac{1}{2}\right)=\frac{1+\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{3}}=12$

Example 4.

Determine the area of convergence and the sum $\sum_{n=1}^{\infty} n^{2} x^{n}$ and then find the sum of the numerical series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{2^{n}}$

Solution :

As is $a_{n}=n^{2}$ we will use $\quad \lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\mathbf{R}$
$\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+2 n+1}=\frac{1}{1}=1$, so we have $R=1$

Series is convergent for $x \in(-1,1)$. We must examine what happens for $x=-1$ and for $x=1$
For $\quad \mathrm{x}=1$

We have numerical series $\sum_{n=1}^{\infty} n^{2} 1^{n-1}=\sum_{n=1}^{\infty} n^{2}$. As is $\lim _{n \rightarrow \infty} n^{2}=\infty$, he diverges.
For $\quad x=-1$

Similar thinking: $\sum_{n=1}^{\infty} n^{2}(-1)^{n-1}$, he diverges because general is not the approaches zero.
We conclude that the area of convergence remains $x \in(-1,1)$

We will use well-known development $\quad \frac{1}{1-x}=\sum_{n=0}^{\infty} \mathrm{x}^{\mathrm{n}} \quad-1<\mathrm{x}<1$.
Make a small correction $:\left(\frac{1}{1-x}=\sum_{n=0}^{\infty} \mathrm{x}^{\mathrm{n}} \quad\right.$ all multiply by x$)$
$\sum_{n=1}^{\infty} x^{n}=\frac{x}{1-x} \quad x \in(-1,1)$

Further work:
$\sum_{n=1}^{\infty} n^{2} x^{n}=\sum_{n=1}^{\infty} n \cdot n \cdot \underset{\text { go ahead }}{x} \cdot x^{n-1}=x \sum_{n=1}^{\infty} n \cdot \frac{n \cdot x^{n-1}}{\text { derivative }} \begin{aligned} & \text { of } x^{n}\end{aligned}=x \sum_{n=1}^{\infty} n \cdot\left(x^{n}\right)^{`}=x\left(\sum_{n=1}^{\infty} n \cdot x^{n}\right)^{\prime}=$
we take x and front brackets :
$x\left(\sum_{n=1}^{\infty} n \cdot x^{n}\right)^{\prime}=x\left(x \sum_{n=1}^{\infty} n \cdot x^{n-1}\right)^{\prime}=x\left(x \sum_{n=1}^{\infty}\left(x^{n}\right)^{)^{\prime}}\right)^{\prime}=x\left(x\left(\sum_{\substack{n=1 \\ \text { replace this }}}^{\infty} x^{n}\right)^{\prime}\right)^{\prime}=x\left(x\left(\frac{x}{1-x}\right)^{\prime}\right)^{\prime}$
Now we have a job to find derivatives:

$$
\begin{aligned}
& x\left(x\left(\frac{x}{1-x}\right)^{\prime}\right)^{\prime}=x\left(x\left(\frac{1-x+x}{(1-x)^{2}}\right)\right)^{\prime}=x\left(\frac{x}{(1-x)^{2}}\right)^{\prime}=x \cdot \frac{(1-x)^{2}-2(1-x)(-1) x}{(1-x)^{4}}= \\
& =x \frac{(1-x)^{2}+2(1-x) x}{(1-x)^{4}}=x \frac{(1-x)[1-x+2 x]}{(1-x)^{4}}=x \frac{x+1}{(1-x)^{3}}=\frac{x(x+1)}{(1-x)^{3}}
\end{aligned}
$$

Sum of number series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{2^{n}}$ we will find when we put $-\frac{1}{2}$ in $\sum_{n=1}^{\infty} n^{2} x^{n}$ or $\frac{x(x+1)}{(1-x)^{3}}$ instead of x .
$\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{2^{n}}=\frac{-\frac{1}{2}\left(-\frac{1}{2}+1\right)}{\left(1-\left(-\frac{1}{2}\right)\right)^{3}}=\frac{-\frac{1}{4}}{\frac{27}{8}}=-\frac{2}{27}$

Example 5.

Examine the convergence $\sum_{n=1}^{\infty} \frac{n+1}{n} x^{n}$ and find its sum.

Solution :

From $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\mathbf{R}$ we have : $\lim _{n \rightarrow \infty} \frac{\frac{n+1}{n}}{\frac{n+2}{n+1}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n(n+2)}=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}+2 n}=\frac{1}{1}=1$
So: $x \in(-1,1)$.
For $\mathrm{x}=-1$
We get series $\sum_{n=1}^{\infty} \frac{n+1}{n}(-1)^{n}$, it is obvious that $\lim _{n \rightarrow \infty} \frac{n}{n+1}=1 \neq 0$ series diverges.

For $\mathrm{x}=1$

A similar situation : For $\sum_{n=1}^{\infty} \frac{n+1}{n}$ is $\lim _{n \rightarrow \infty} \frac{n+1}{n}=1 \neq 0$ then series diverges.

We conclude that the area of convergence of saeries is interval $(-1,1)$.

Mark : $f(x)=\sum_{n=1}^{\infty} \frac{n+1}{n} x^{n}$
First, we will, at the interval of convergence, integrate serie, to "destroy" $n+1$
$\int_{0}^{x} f(x) d x=\int_{0}^{x}\left(\sum_{n=1}^{\infty} \frac{n+1}{n} x^{n}\right) d x=\sum_{n=1}^{\infty} \frac{n+1}{n} \int_{o}^{x} x^{n} d x=\sum_{n=1}^{\infty} \frac{n+1}{n} \frac{x^{n+1}}{n+1}=\sum_{n=1}^{\infty} \frac{x^{n+1}}{n}$
Throw x in front: $\sum_{n=1}^{\infty} \frac{x^{n+1}}{n}=x \sum_{n=1}^{\infty} \frac{x^{n}}{n}$
From here is:
$\int_{0}^{x} f(x) d x=x \sum_{n=1}^{\infty} \frac{x^{n}}{n}$.
$\frac{1}{x} \int_{0}^{x} f(x) d x=\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
Now look for derivative from this:
$\frac{1}{x} \int_{0}^{x} f(x) d x=\sum_{n=1}^{\infty} \frac{x^{n}}{n} \rightarrow\left(\frac{1}{x} \int_{0}^{x} f(x) d x\right)^{\prime}=\left(\sum_{n=1}^{\infty} \frac{x^{n}}{n}\right)^{\prime}=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n}=\sum_{n=1}^{\infty} x^{n-1}=\frac{1}{1-x}$

We got $\left(\frac{1}{x} \int_{0}^{x} f(x) d x\right)^{\prime}=\frac{1}{1-x}$
To find $\frac{1}{x} \int_{0}^{x} f(x) d x$ we must integrate $\frac{1}{1-x}$:
$\frac{1}{x} \int_{0}^{x} f(x) d x=\int_{0}^{x} \frac{1}{1-x} d x=-\ln |1-x|_{0}^{x}=-\ln |1-x|$

From here we have :

$$
\begin{aligned}
& \frac{1}{x} \int_{0}^{x} f(x) d x=-\ln |1-x| \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \\
& \int_{0}^{x} f(x) d x=-x \ln |1-x|
\end{aligned}
$$

Finally will be:

$$
f(x)=\left(\int_{0}^{x} f(x) d x\right)^{\prime}=(-x \ln |1-x|)^{\prime}=-1 \cdot \ln |1-x|+\frac{1}{1-x}(-1)(-x)=-\ln (1-x)+\frac{x}{1-x}
$$

